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ABSTRACT: We explore via linearized perturbation theory the Gregory-Laflamme instabil-
ity of rotating black strings with equal magnitude angular momenta. Our results indicate
that the Gregory-Laflamme instability persists up to extremality for all even dimensions
between six and fourteen. We construct rotating nonuniform black strings with two equal
magnitude angular momenta in six dimensions. We see a first indication for the occur-
rence of a topology changing transition, associated with such rotating nonuniform black
strings. Charged nonuniform black string configurations in heterotic string theory are also

constructed by employing a solution generation technique.
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1. Introduction

In recent years interest in the properties of gravity in more than D = 4 dimensions increased
significantly. This interest was enhanced by the development of string theory, which re-
quires a ten-dimensional spacetime, to be consistent from a quantum point of view. In
order not to contradict observational evidence, the extra dimensions are usually supposed
to be compactified on small scales.

Black string solutions, present for D > 5 spacetime dimensions, are of particular
interest, since they exhibit new features that have no analogue in the black hole case.
The simplest vacuum static solutions of this type are found by trivially extending to D
dimensions the vacuum black hole solutions to Einstein equations in D — 1 dimensions.
These then correspond to uniform black strings (UBS) with horizon topology SP=3 x S1.

One of the first steps towards understanding the higher-dimensional solutions is to
investigate their classical stability against small perturbations. In a surprising development,
Gregory and Laflamme (GL) showed that the static UBS solutions are unstable below a



critical value of the mass [[l]. Following this discovery, a branch of nonuniform black string
(NUBS) solutions was found perturbatively from the critical GL string in five [, six [J]
and in higher, up to sixteen, dimensions [f]. This nonuniform branch was numerically
extended into the full nonlinear regime for D =5 [{] and D =6 [}, f. In recent work
the nonuniform branch was extended for all dimensions up to eleven. These NUBS are
static configurations with a nontrivial dependence on the extra dimension, and their mass
is always greater than that of the critical UBS (see [ and also [ for a recent review of
this subject).

Apart from the black string solutions, Kaluza-Klein (KK) theory possesses also a
branch of black hole solutions with an event horizon of topology S”~2. The numerical
results presented in [f], fj] (following a conjecture put forward in [[I(]) suggest that the black
hole branch and the nonuniform string branch merge at a topology changing transition. The
problem is also interesting as it is connected by holography to the phase structure of large
N, super-Yang-Mills theory at strong coupling, compactified on a circle (see e.g. [ -[J]).

Recently, interest in the properties of rotating solutions in more than D = 4 dimen-
sions increased significantly, as well. Rotating black objects typically exhibit much richer
dynamics than their static counterparts, especially in more than four dimensions. A fa-
mous example is the black ring solution [[[4] in five-dimensional vacuum gravity, which has
horizon topology S? x S!, its tension and self gravitational attraction being balanced by
the rotation of the ring.

The KK theory presents also spinning configurations. The simplest rotating UBS
configurations are found by taking the direct product of a (D — 1)-dimensional Myers-
Perry (MP) solution [[§] with a circle. These solutions are likely to exhibit a classical
GL instability, as well, at least for some range of the parameters. However, previous
investigations have focused on static black strings, and no attention has been given to
spin. A major obstacle in this direction is that the analytic theory of perturbations of
higher-dimensional black holes has not been fully developed yet (see, however, the recent
work [[[[]).

A MP spinning black string in D dimensions is characterized by the mass-energy, the
tension, and [(D — 2)/2] angular momenta, where [(D — 2)/2] denotes the integer part of
(D — 2)/2. The generic rotating nonuniform solutions possess a nontrivial dependence on
(D — 4)/2 angular coordinates, which therefore pose a difficult numerical problem. In the
even-dimensional case, however, the problem can be greatly simplified, when the apriori
independent (D — 2)/2 angular momenta are chosen to have equal magnitude, since this
factorizes the angular dependence [[I]]. The problem then reduces to studying the solutions
of a set of five partial differential equations with dependence only on the radial variable r
and the extra dimension z.

In this paper we focus on this particular case, by studying first the GL instability of
MP UBSs with equal magnitude angular momenta in even spacetime dimensions. These
particular MP solutions possess interesting features, which strongly contrast with those
of MP solutions with a single nonzero angular momentum. In particular, we note the
existence of an upper bound for the scaled angular momenta J/M(P=3)/(P=4) [[[F [{], an
extremal solution being found, when this limit is approached; whereas no such upper bound



is present for single angular momentum MP solutions, unless D =4+ 1 or D =5+ 1.

Although the GL instability is inevitable for static vacuum black strings, the presence
of rotation (or a gauge field charge) might prevent black strings from exhibiting such an
instability. However, our numerical results indicate that the GL instability persists for
rotating vacuum black strings all the way to extremality, at least for all (even) dimensions
between six and fourteen.

This type of solutions also provides a new laboratory to test the Gubser-Mitra (GM)
conjecture [[[J], that correlates the dynamical and thermodynamical stability for systems
with translational symmetry and infinite extent. In this conjecture, the appearance of
a negative specific heat of a black string is related to the onset of a classical instability
(see [B0, BT for a discussion of this issue in the case of charged static black strings and
black p—branes). The analysis of the thermodynamical stability of the MP UBS indicates
that thermodynamical stability becomes possible when taking a canonical ensemble, for
solutions near extremality. However, in a grand canonical ensemble all UBS configurations
are unstable, which agrees with the results we found when studying the GL instability.

In D = 6 we constructed the set of rotating nonuniform black strings numerically.
These rotating NUBS solutions can be found by starting with static NUBS configurations
and increasing the value of angular velocity of the event horizon, in the domain where
static NUBS exist. Alternatively, one can start with rotating MP UBS solutions and
then construct the set of rotating NUBS configurations from the stationary perturbative
nonuniform solutions.

The paper is structured as follows: we begin with a presentation of the general ansatz
and the generic properties of rotating black strings with equal angular momenta in even
spacetime dimensions. In section 3, we consider the corresponding MP uniform solutions,
discussing their thermodynamical properties and the issue of GL instability. In section 4
we demonstrate that for D = 6 a set of rotating NUBS solutions with two equal angular
momenta exists, at least within the scope of our numerical approximation. The numerical
methods used here are similar to those employed to obtain the D = 5, 6 static NUBS
solutions in [[]. We discuss charged NUBS in heterotic string theory in section 5, and give
our conclusions and remarks in the final section.

2. General ansatz and properties of the solutions

2.1 The equations

We consider the Einstein action
1 D
d”x\/—gR —
M

1
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/ dP e/ —hK, (2.1)
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in a D—dimensional spacetime, with D > 6 an even number. The last term in (R.1) is
the Hawking-Gibbons surface term [RJ], which is required in order to have a well-defined
variational principle. K is the trace of the extrinsic curvature for the boundary M and

h is the induced metric of the boundary.



We consider black string solutions approaching asymptotically the (D —1)-dimensional
Minkowski-space times a circle MP~1 x S1. We denote the compact direction as z = 2P ~!
and the directions of RP~2 as z!,..., 2”2, while P = t. The direction z is periodic with
period L. We also define the radial coordinate r by 72 = (2!)2 +--- + (2P=2)2,

To obtain nonuniform generalizations of the rotating uniform black string MP solu-
tions, we consider space-times with (D — 2)/2 commuting Killing vectors d,,. While the
general configuration will then possess (D — 2)/2 independent angular momenta, we here
restrict to rotating NUBS whose angular momenta have all equal magnitude. Analogous
to the case of black holes [[[]], the metric parametrization then simplifies considerably for
such rotating NUBS
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where 0; € [0,7/2] for i = 1,...,(D —4)/2, ¢ € [0,27] for k = 1,...,(D — 2)/2, and
we formally define 6y = 0, 6(p_g)/2 = w/2. As a result of taking all angular momenta
to be equal, the symmetry group of this spacetime is enhanced from R x U(l)(D =2)/2 o
R x U(£52), where R denotes time translation.

We shall assume that the information on the NUBS solutions is encoded in the func-
tions A(r, z), B(r,2),C(r,2),G(r, z) and W (r, z), while f(r) and h(r) are two ‘background’
functions which are chosen for convenience. A useful parametrization when studying un-
stable modes around a MP solution is

oM  2Ma? 2Ma? 2Ma
o1t D=2’ h(r) =1+ D=2 > w(r) = D=2 (1)’

) =1- (2.3)

r

where M and a are two constants related to the solution’s mass and angular momentum
(and W (r, z) = w(r) for uniform black strings). When constructing nonperturbative NUBS
solutions, a more convenient choice for the numerics is

fr)y=1—(ro/r)P™", n(r)=1, (2.4)

together with a redefinition of the radial coordinate, where ry denotes the coordinate
value of the horizon. The static NUBS ansatz used in previous studies is recovered for
G(r,z) =C(r,z) and W(r,z) = 0.

A suitable combination of the Einstein equations, Gt = 0, GI + G% = 0, Ggi =0,
Gfpl =0 and GJ} = 0, yields the following set of equations for the functions 4, B, C, G



and W
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and a prime denotes the derivative with respect to r.

All other Einstein equations except for G, = 0 and G| —G% = 0 are linear combinations
of those used to derive the above equations or are identically zero. The remaining Einstein
equations G = 0, GT — GZ = 0 yield two constraints. Following [J], we note that setting
Gl = Gg =G =G +GZ=01in V,G' =0 and V,G"* = 0, we obtain

0. (V=962 + V7o, (VIv=a5(cr - 62) ) = (2.11)
Vo, (v=36) ~ 0. (Viv=ag(6 - 62) =0



and, defining # via 0/0; = +/f9/0,, then yields the Cauchy-Riemann relations
1
0. (v=961) +0: (VIV=a5(G1 - 2)) = . (2.12)
1
0 (V—9Gz) — 0 (x/f\/—gg(Gi - Gi)) = 0.

Thus the weighted constraints satisfy Laplace equations, and the constraints are fulfilled,
when one of them is satisfied on the boundary and the other at a single point [f].

2.2 General properties

We impose the event horizon to reside at a surface of constant radial coordinate r = rg,
where f(r) = f'(ro)(r — 7o) + O(r — 79)? while h(rg) > 0, f'(rg) > 0. Also, the functions
f(r) and h(r) take only positive values for r > ¢ and tend to one for r — oo.

The Killing vector x = 0/0; + >, Q,0/0py, is orthogonal to and null on the horizon.
For the solutions within the ansatz (P-3), the event horizon angular velocities are equal,
Qk = QH = W(T, Z)’r:m-

Utilizing the reflection symmetry of the nonuniform black strings w.r.t. z = L/2, the
nonuniform solutions are constructed subject to the following set of boundary conditions

A{r:oo = B{r:oo = C{r:oo = G{r:oo = W{r:oo = 0’ (213)
B‘r:ro B A‘r:m =do, aTA‘r:m = arC‘r:ro = a”G‘r:ro = 0, W|r:m = Qu, (214)
aZA‘zzO,L/Q - aZB‘zzO,L/Q :aZC‘Z:O,L/Q :32G|z:o,L/2 :aZW|Z:0,L/2 =0, (215

where the constant dj is related to the Hawking temperature of the solutions.

As in the case of 3 4+ 1-dimensional Kerr black holes, the rotating black strings have
an ergosurface inside of which observers cannot remain stationary, and will move in the
direction of the rotation. The ergosurface is located at g = 0, i.e.

62A(r,z)f(,r)

2G(r,z),.2 2
e r“h(r)W(r, 2) hr)

=0, (2.16)
and does not intersect the horizon. (Note that the ergoregion here extends nontrivially in
the extra dimension.)

The computation of the conserved charges of rotating black strings was discussed
e.g. in [2]. The essential idea there is to consider the asymptotic values of the gravitational
field far away from the black string and to compare them with those corresponding to a
gravitational field in the absence of the black string. The obvious choice of the background
in this case is MP~1 x S, the asymptotic form of the relevant metric components being

k—1
~ Ct ~ Cz ~ 2 2 C‘P
git = -1+ m, Gzz = 1+ ’I“Dﬁ’ Gt = (ll_g COs 9l> S1I1 Hk? rD—1° (217)
which reveals the existence of three free parameters ¢;, ¢, and c,. The mass-energy E, the
tension 7 and the angular momenta J; of black string solutions are given by
Ap_sL Ap_ Ap_sL
E=2P32(D=3)¢ —c), T=23 -~

_ — —(D—=3)¢,), Jy=J= ,(2.18
167Gp TonGp @~ Jez)s i snGp o (218)




where Ap_3 = 27T¥/F((D —2)/2) is the area of the unit D — 3 sphere.

The global charges of a black string can also be computed by using the quasilocal ten-
sor of Brown and York [B4], augmented by the counterterms formalism. In this approach
we add to the action (R.J]) suitable counterterms I.; built up with curvature invariants
of the induced metric on the boundary M [RH-R7]. These counterterms do not alter
the bulk equations of motion. Unlike the background substraction, this procedure is sat-
isfying since it is intrinsic to the spacetime of interest and it is unambiguous once the
counterterm is specified. Our choice of the counterterm was similar to the static case [g],

I, = —ﬁ\/(D —3)/(D —4) [5,\, dP~'z/=h\V/R, where R is the Ricci scalar of the

boundary geometry. The variation of the total action with respect to the boundary metric

h;j provides a boundary stress-tensor, whose expression is given e.g. in [Fl. The mass-
energy, tension and angular momenta are the charges associated to 9/0t, 9/0z and 9/d¢y,
respectively (note that 9/0z is a Killing symmetry of the boundary metric). We have ver-
ified that for D = 6, 8 and D = 10 the expressions computed in this way agree with (2.1§)
(see B4, for similar computations for a different type of rotating solutions).

One can also define a relative tension n (also called the relative binding energy or
scalar charge)

neLL_a=-(D=3) (2.19)
E (D —3)ct — ¢,

which measures how large the tension is relative to the mass-energy, being constant for
UBS solutions.

The Hawking temperature Ty = kg /27 can be obtained from the standard relation

1
wir == 5V Vaxs| (2.20)

r=rg

where kp is the surface gravity, which is constant at the horizon. One finds
Ty = o~ Bo 7Y — =do 70), (2.21)

where TI(;] ) s the Hawking temperature of the uniform solution based on the
same ‘background’ functions (R.3), TI(})) = f'(ro)/(4w+/h(rg)). Here and below
Ap(2), Bo(z),Co(z), Go(z) and Wy(z) denote the values of the metric functions on the
event horizon r = rg.

The area Ap of the black string horizon can also be expressed in a similar way

L
Ay = Agg% / Bot(D-4)Co+Gog, (2.22)
0

with Ag) the event horizon area of the corresponding uniform solution

A = LAp_srP=3\/n(ro) . (2.23)

As usual, one identifies the entropy of the black string solutions with one quarter of their

event horizon area, S = Ay /4Gp.



Considering the thermodynamics of these solutions, the black strings should satisfy
the first law of thermodynamics

D -2
dE = TydS + %QHCZJ +TdL. (2.24)

One may regards the parameters S, J and L as a complete set of extensive parameters for
the mass-energy E(S,J, L) and define the intensive parameters conjugate to them. These
quantities are the temperature, the angular velocities and the tension.

Following [[[3, BJ], one can derive in a simple way a Smarr formula, by letting the
length of the compact extra dimension change as L — L 4+ dL. This implies

I, D-3 I, D-2 I, D-2
E—»E(l—kdf) , S—>S<1—|—df> , J—>J<1+df> . (2.25)

As a result we find the Smarr formula (see also 23] for a different derivation of this relation)
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In the canonical ensemble, we study black strings holding the temperature Ty, the
angular momenta J and the length L of the extra dimension fixed. The associated ther-
modynamic potential is the Helmholz free energy

F[Ty,J,L] = E —Tys . (2.27)

In the grand canonical ensemble, on the other hand, we keep the temperature, the angular
velocity and the tension fixed. In this case the thermodynamics is obtained from the Gibbs
potential

GlTy,Qm,T)=E —TyS — (D=2

QpJ —TL. (2.28)

We finally remark that the technique used in [B(}, BI]] to construct ‘copies of solutions’
works for rotating NUBS, too. When taking f(r) = 1— (ro/r)P?~%, h(r) = 1, i.e. (£4), the
Einstein equations (2.§)—(R-9) are left invariant by the transformation r — r/k, z — z/k,
ro — ro/k, with k an arbitrary positive integer. Therefore, one may generate a family
of vacuum solutions in this way. The new solutions have the same length of the extra
dimension. Their relevant properties, expressed in terms of the corresponding properties
of the initial solution, read

T® k1, S®) = I R O ) = kQy.(2.29)

E
k) _
E®) = D3 = D5

T D4

3. Rotating UBS with equal angular momenta

3.1 Thermodynamics

We start by discussing the properties of uniform black string solutions obtained by taking

A= B =C =G =0 in the general ansatz (2.3) with the functions f, h and W (r, z) = w(r)



given by (R.J). The extra dimension plays no role here and the general results apply to
d = (D —1)-dimensional MP black holes when formally taking L = 1 in the relations below.
The uniform black strings have two parameters M and a which, from (R.1§), are related
to the physical mass-energy and angular momenta by
Ap 3L Ap 3L
EF=————(D-3M, J=J=——M 3.1
snGp LT IM i mGp (3.1
Hence one can think of a as essentially the angular momentum per unit mass. The tension 7
of the uniform solutions is fixed by the mass-energy E and length L of the extra dimension

FE
T= o5 (3.2)

The event horizon of these uniform black strings can be determined as the largest root
of 1/grr =0 resp. f(r) = 0. That is

rd ™% —2Mr} 4+ 2Ma® = 0. (3.3)

This equation has zero, one or two positive roots, depending on the sign of f(rs), where
rs = (4M /(D —2))/(P=4) is the largest root of (r?=2f(r))’ = 0. The existence of a regular
horizon implies an upper limit on a,

2

D—-4/( 4M \D—2
a? < <—> = a? (3.4)

D—-2\D-2 fax

which via (B.]) can also be expressed as

J 9D+1 1/(D—4) Gp 1/(D—-4)
———<vD-4 . 3.5
o= ((D —3)P73(D — 2)(D2)/2> (AD—3L> 39)

This strongly contrasts with the case of MP UBS solutions with a single nonzero angular
momentum, where for D > 6 there are configurations with arbitrarily large J, without an
occurrence of an extremal limit.!

1/(D—4)

The ergosurface of the uniform solutions is located at r. = (2M) . The horizon

angular velocities and the Hawking temperature of the UBS solutions are given by

a 1 2M 1/2 rb—4
Qp=—, Ty=—|—"—— D—-2)"%_ _9]}. 3.6
H T’(Q]’ H 471'7"0 <7”0D_4> (( ) IM > ( )

Solutions with a = amax are extremal black strings with T = 0, possessing a nonzero
entropy. As can be seen e.g. by computing the Kretschmann scalar, the hypersurface
r = rq is not singular in this limit.

Similar to the static case, the gravitational thermodynamics of the rotating UBS can be
formulated via the Euclidean path integral. The Euclidean spinning black string solutions

'However, as argued in [@], MP black holes with a single nonzero angular momentum are in fact
classically unstable (at least for large rotation) and an effective Kerr bound arises through a dynamical
decay mechanism.



can be obtained from the Minkowskian ones by sending ¢t — —it and a — ia (complexifying
a is necessary in order to keep the dtdp; part of the metric real). The thermodynamic sys-
tem has a constant temperature Ty = 1/ which is determined by requiring the Euclidean
section be free of conical singularities (the temperature computed in this way coincides
with that in (B.6)). The partition function for the gravitational field is defined by a sum
over all smooth Euclidean geometries which are periodic with a period [ in imaginary
time [PJ]. This integral is computed by using the saddle point approximation, the global
charges and entropy of the solutions being evaluated by standard thermodynamic formulae.
Upon application of the Gibbs-Duhem relation to the partition function [BJ], this yields an
expression for the entropy

(D -2)

2

S=2 <E - QpJ — TL> — 1, (3.7)

(with I the regularized tree level Euclidean action), which agrees with that computed
from (B.29). The entropy can be written in terms of M, rq as

) ) 1/2
_ -3
S = 1 DAD,3LTO <ré)4> . (3.8)

The parameters M, a, rg can be eliminated and one can write the following equation of
state (analogous to f(p,V,T), for, say, a gas at pressure p and volume V)

/
_ AD_gL _ _ _ (D — 4)92
J =2 (D+6)/2G7D(D_4)D 2,1 DQHTIQ{ D <1+\/1+TT12{H (3.9)
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The following relations are also useful in what follows
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,10,



As implied by (B.10), the rotating UBSs have always a smaller temperature for the same
entropy than the static UBSs. The energy to entropy ratio of the UBS solutions satisfies
the following bounds

D-3 D-3 _9\(D-2)/2
1 < ™ > Gp E <(D 2) (3.14)

92(D-2) = D -3 Ap_sL SD—4 — 25(D—2)/2 ’

these limits being approached for static and extremal solutions, respectively. There is also
an upper bound for the ratio J/S,

D -4

1
< — 3/ — .
— 27 2

W0l &

(3.15)

The analysis of the thermodynamic stability of the rotating UBS solutions can be
performed using the above relations. It is known that different thermodynamic ensembles
are not exactly equivalent and may not lead to the same conclusions as they correspond
to different physical situations. Mathematically, thermodynamic stability is equated with
the subadditivity of the entropy function. This requires S(E,J, L) to be a concave func-
tion of its extensive variables. The stability can also be studied by the behaviour of the
energy E(S,J, L) which should be a convex function. Therefore one has to compute the
determinant of the Hessian matrix of F(S,.J, L) with respect to its extensive variables X,
HE . = [0°E/0x,0x;] B3, 9.

In the canonical ensemble, the subadditivity of the entropy is exactly equivalent to
positivity of the specific heat at constant (J, L), Cj1 = T (0S/0Ty) 1. Also, the Gibbs
potential which is relevant for a grand canonical ensemble can be written as G[Tx, Qp, L] =
E/(D —2), as a result of the Smarr law (P.24).

At this point it is instructive to see first the corresponding situation for the (D — 1)-
dimensional MP black holes. It is easy to work out from (B.1() that the condition for a
positive specific heat at fixed angular momenta is equivalent to

32(D — Da*J* + 4D(D - 5) + 10)7°J*S* — (D — 4)S* > 0. (3.16)

As expected, C is negative far from extremality, becoming positive for large enough values
of J.

To discuss the thermodynamic stability of black holes in a grand canonical ensemble,
we consider first the specific heat at constant angular velocity at the horizon

08

A straightforward computation using (B.12) shows that this is a negative quantity in the
full range of variables, Cq < 0. One can also verify that the determinant of the Hessian
matrix of E(S,J) is negative

4(D — 2)m? E?(8J%7? 4+ (D — 2)S?%)
(D —3)3 S2(4J272 4 52)

det(0*E/0X,;0X;) = — <0. (3.18)
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As aresult, all MP rotating black hole solutions with equal angular momenta are unstable in
a grand canonical ensemble, and also the configurations far from extremality in a canonical
ensemble.

Another ‘response function’ of interest is the ‘isothermal permittivity’

oJ
= — . 1
er <8QH > . (3.19)

One finds from (B.9) that the condition for a positive er is

1/2
Q0 2 2+5D — D? D? —5D + 22
=L ki + il . (3.20)
Ty ~\D—4\(D-2)(D-23) (D —2)(D - 3)
For D = 6, this corresponds to Qg /Ty < 1.7165, for D = 8 to Qg /Ty < 0.7892 and

for D = 10 to Qg /Ty < 0.477. All other rotating black hole solutions have a negative
‘isothermal permittivity’ and thus are unstable to angular fluctuations, both in a grand

canonical and a canonical ensemble.

These conclusions remain unchanged when adding one (trivial) extra dimension to
the black hole solutions. Similar to the static case, all grand canonical configurations are
thermally unstable.? Also, all rotating UBS solutions with J/S < J(©) /S() are unstable in
a canonical ensemble, where the critical ratio J (c)/ S(©) is given by

J© 1
S 4rv/D —1

<\/(D —2)(D - 3)(D(D —5) +22) — D(D — 5) — 10)1/2 . (3.21)

At the critical point, the specific heat goes through an infinite discontinuity, and a second
order phase transition takes place. The critical values for other relevant quantities read

D—

T = [(D)(T) ™55, B = fo(D)(JO) 53, Q) = f3(D)(J) 55, (3.22)

N

where

_ap1 [ Ap_sL 1/(D-3) D2 _ (D-1) D4
h(D) = 2785 (2222) B (0 - )7 (D) - (0 - 2)(0 - 1) T
D

X (3(D = 2)(D = 3) — fo(D)) (fo(D) — 18 + 5D — D)@,
D+2 /(D=3)
L)y = 20 (%) T 6n) (p ) p — 1)) (3.25)
%(fo(D) = (D = 2)(D = )T (fo(D) ~ D(D — 5) — 10) 755,
f5(D) = (32m)1/3=D) <M

Gp
x(fo(D) — D(D — 5) — 10)p-3 ,

D—-4

1/(D=3)
) -0 D - 0 - n0 - 1)

2However, in this case the determinant of the Hessian vanishes identically, as a result of the special
dependence on L. This happens already for a Schwarzschild black string when considered as a solution in
a grand canonical ensemble with fixed T, 7.
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Figure 1: The dimensionless quantity a?/ ( p(D)M ﬁ) is shown as a measure of the rotation of
the uniform black strings at constant temperature 277 = 1 in D even dimensions, 6 < D < 14,
versus the wavenumber k of the zeromode fluctuation.

while

fo(D) = /(D —2)(D —3)(D(D — 5) +22) . (3.24)

One finds for example the critical ratio Qg)/T(c) ~ 2.42757 for D = 6, Qg)/TI({c) ~ 1.1162
for D = 8 and QS)/T(C) ~ 0.6747 for D = 10.

3.2 Gregory-Laflamme instability

It is natural to expect that the MP uniform black strings become unstable at critical values
of the mass and angular momentum. To determine these critical values for black strings
with equal magnitude angular momenta, we make an expansion around the UBS of the

form

A(r,z) = eay(r) cos(kz) + O(€?),
B(r,z) = ebi(r) cos(kz) + O(e?),
C(r,z) = eci(r) cos(kz) + O(€?),
G(r,z) = egi(r) cos(kz) + O(e?),
W (r,z) = w(r) + ewy (r) cos(kz) + O(€?), (3.25)

with € a small parameter and f,h,w given by (R.J). This expansion is appropriate for
studying perturbations at the wavelength which is marginally stable.

Upon substituting the above expressions into the Einstein equations, to order O(e) the
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following set of ODE is generated
D-3 3f W rn

" = = = 7 !/ J 7 D _ 4 / /
a1+< . +2f 2h>a1+<2f 5 (( )i+ g1)
r2h2w’ , 7,,2 h2w/2 k:2a1

— wy + a —gi) — =0,
Fot f ( ) f
D — n D —4)? !

(- (P2 gy o - B Lo - 0- 0

L/n f 2(D-4))\, r*h* , (D-4)h
+§<ﬁ_7_T G- oy T Ty o 2ata)
r2h2w'™ (D —2)(D — 4) k2by
+ oF (a1 —g1) + 27 (b1—01)—T—0,
o, 1 2(D —2) 4h k%c
it et (2D = Netg)+ =5 (—b)+ (b —2e+91) - —— =0,
D-2 f N r2h2w’ 2(D — 4)h
" - - J 7 / / _ _
g1 + ( . + 7 + 2h>91 + 7 wy + 2 (2¢1 — g1 —b1)
1 h/ , 7,,2h2,w12 ngl
A D — 4)¢, —a)——2 =0
#(5+ g7 ) @ + (0= 0) + (g = ) - =
D—-1 2K k?
wf + (P + 5 Jut + (o (D - 0+ 30’ - o,
(3.26)

This eigenvalue problem for the wavenumber k = 27 /L is then solved numerically with
suitable boundary conditions, for rotating black strings in D even dimensions, 6 < D < 14.
The results are displayed in figure 1, where we exhibit the dimensionless quantity (see

eas. (B). ) o/ (p(D)M 7)), with

W0 =575 (5535) (3.27)

as a measure of the rotation versus the wavenumber £ for constant temperature, 27Ty = 1.
Note, that for extremal solutions a?/ <p(D)Mﬁ) = 1. Keeping the temperature fixed,
the wavenumber £k of the marginally stable mode increases with increasing rotation and
decreases with increasing dimension D.
Introducing the scaled energy-mass M, and the scaled angular momentum J; (following
eq. (.18))
. AD,3L
~ 167Gp

Ap_sL
Js, 3.28
8rGp ( )

these results are presented in figure 2 (left) in a “phase diagram” format for fixed L = Ly,

(D_3)Msa Jp=J=—

where Ly there corresponds to the critical length of the corresponding static solutions. Here
Mg and J are suitably normalized and equipped with powers, such that the extremality
curve is the same for any dimension D.

In principle, following [fl], one can get an estimation of k by equating the entropy of
the rotating string with that of a MP rotating black hole with the same momenta. The
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Figure 2: Left: The relation between the scaled mass My and scaled angular momentum J; for
fixed critical length of the extra dimension L is shown for rotating solutions in D even dimensions,
6 < D < 14. Both Mg and J, are equipped with suitable powers and normalizations. Ly represents
the value where the instability of the static uniform black string occurs. Right: The ratio betwen the
wavelength estimate k(¢ and the value of k found numerically is plotted at constant temperature

27Ty = 1 as function of the dimensionless quantity a?/ (p(D)M ﬁ)

entropy, mass-energy and angular momenta of a black string are related through (B.13).
The corresponding relation for a MP black hole in D dimensions with (D — 2)/2 equal
angular momenta can easily be derived by using the relations in [[[J], and reads

B - 1/(D-2) 2 72
Jo %72)2—% <A£;2> 5%1/14_% , (3.29)

(est)

The expression for the wavelength estimate k we find by equating the entropies is

D—2
es 472 J2\ 20-3)
ket = {0 (1 + WSQJ > (3.30)
where
(est) _ o—D+l D=2 Ap_3 (D —3)P—3 1
kg =2 Dsg D=3 (AD_Q)% b 2)% GoE) DD (3.31)

is the wavelength estimate for a static solution with the same value of E. From (B.15) we

find that nonextremal rotating solutions satisfy the inequality

D—2
est es D —2)\20-9 est
kS < ket < <T> kG, (3.32)

and thus k(¢*Y) stays finite in the extremal limit.
The above wavelength estimate can also be expressed in terms of variables used in the

numerical procedure as

D—3\""? Ap_ 1
k(e = o7 <—> D3 . (3.33)

D -2 Ap—2/r} — a2
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The fact that, as seen in figure 1, the numerical value of k£ takes very large values in the
limit a?/ (p(D)M ﬁ) — 1, is a consequence of keeping the temperature constant and
letting 79 run. If we would rescale with rgy, the temperature would vanish in the extreme
limit and the rescaled k would stay finite.

The ratio between the numerical value of k one finds by solving the equations (8.24)
and the above estimate is presented in figure 2 (right).

For static black strings, the study of the perturbative equations in second order revealed
the appearance of a critical dimension, above which the perturbative nonuniform black
strings are less massive than the marginally stable uniform black string [[I]. It would
therefore be interesting to solve the perturbative equations to second order also in the
presence of rotation. But so far we have encountered numerical problems in such an
analysis.

4. D = 6 rotating nonuniform black string solutions

4.1 Numerical procedure

To construct rotating nonuniform black string solutions numerically, we introduce analo-

gous to the static case the new radial coordinate 7,
F=y/r2 =13, (4.1)
thus the horizon resides at 7 = 0.

The D = 6 line element eq. (R.d) then reads (with 6; = )

~ ~2 ~ ~
ds® = — 24(2) T—N dt? + ¢2B(2) (di® 4 dz%) + e2C(72) g(7) d6? (4.2)

9(F)
+e26002) g(7) <sin2 0 (dpy — W (7, 2) dt)* + cos® 8 (dgp — W (F, 2) dt)2>

- (eQG(F’z) - eQC(F’Z)) g(7) sin? 6 cos? 0 (dep1 — dg02)2 ,

where g(7) = rg + 72
We then change to dimensionless coordinates p and (,

p="7/(ro+7), (=2z/L, (4.3)

where the compactified radial coordinate p maps spatial infinity to the finite value p = 1,
and L is the asymptotic length of the compact direction.

We solve the resulting set of five coupled non-linear elliptic partial differential equa-
tions numerically, subject to the boundary conditions egs. (.13)—(R-I). These numerical
calculations are based on the Newton-Raphson method and are performed with help of the
program FIDISOL [Bg], which provides also an error estimate for each unknown function.

The equations are discretized on a non-equidistant grid in p and (. Typical grids
used have sizes 65 x 50, covering the integration region 0 < p < 1 and 0 < ¢ < 1/2.
(See [BG and [B7 for further details and examples for the numerical procedure.) For
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the nonuniform strings the estimated relative errors range from approximately ~ 0.001%
for small geometric deformation to ~ 1% for large deformation. We also monitored the
violation of the weighted constraints +/f/—g(G: — G%) = 0, and \/—¢gG% = 0, which is
typically less then 0.1.

The horizon coordinate rg and the asymptotic length L of the compact direction en-
ter the equations of motion as parameters. The results presented are obtained with the
parameter choice

ro=1, L=L""=49516, (4.4)

where Lt represents the value, where the instability of the static uniform black string
occurs.

Rotating nonuniform black strings can then be obtained by starting from a static
nonuniform black string solution and increasing the value of angular velocity Qg of the
event horizon, which enters the boundary conditions. By varying also the second boundary
parameter dy, associated with the temperature of the black strings, dy = ln(TI({O ) /Tr)
(see eq. (B:21))), the full set of rotating nonuniform black strings can then be explored.
An alternative procedure to obtain rotating NUBS numerically would be, to start from
stationary perturbative nonuniform solutions.

The basic properties of the NUBS are encoded in the five metric functions A(p, (),
B(p,¢), C(p,¢), G(p,¢), and W(p,(). These functions change smoothly with the two
boundary parameters dy and ;. We illustrate these functions in figure 3, for the parameter
choices dg = 0.6 and Qp = 0.25 resp. Qg = 0.202, the latter corresponding to a solution
in the strongly deformed region close to the expected transition from rotating nonuniform
black strings to rotating caged black holes.

4.2 Properties of rotating black strings
4.2.1 The horizon

For the static NUBS a measure of their deformation is given by the nonuniformity param-

eter A

1 Rmax
. 1 4,
A 2 (Rmin > ’ ( 5)

where Ryax and Ruin represent the maximum radius of a (D — 3)-sphere on the horizon
and the minimum radius, respectively, the minimum radius being the radius of the ‘waist’
of the black string. Thus for uniform black strings A = 0, while the horizon topology
changing transition should be approached for A — oo [B§, BJ.

For the rotating NUBS one has to take into account, that the rotation leads to a de-
formation of the 3-sphere of the horizon, making it oblate w.r.t. the planes of rotation.
Therefore, various possibilities arise to define the nonuniformity parameter A. In the fol-
lowing we employ the above definition of A, where Ry.x and Ruyin are obtained from the
area Ap of the respective deformed 3-sphere via Ag = 272R3.

In figure 4 we exhibit the spatial embedding of the horizon into 3-dimensional space for
a sequence of D = 6 rotating NUBS. In these embeddings the symmetry directions (1, ¥2)
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Figure 3: The metric functions A, B, C, G and W of the D = 6 rotating nonuniform black string
solution with temperature parameter dy = 0.6 and horizon angular velocity Qg = 0.25 (left column)
and Qg = 0.202 (right column) are shown as functions of the compactified radial coordinate p, and
the coordinate ¢ of the compact direction. Note that the horizon is located at p = 0.
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are suppressed, and the proper circumference of the horizon is plotted against the proper
length along the compact direction, yielding a geometrical view of both the deformation
of the horizon due to rotation and the nonuniformity of the horizon with respect to the
compact coordinate.

For the solutions of the sequence shown in figure 4 the temperature is kept fixed with
temperature parameter dyg = 0.6. The first solution of the sequence corresponds to the
marginally stable rotating uniform black string, which has A = 0 and horizon angular ve-
locity Q1 = 0.34908. When the horizon angular velocity is lowered, rotating black strings
with increasing nonuniformity are obtained. Shown are solutions with nonuniformity pa-
rameter A = 0.83, 1.7 and 2.9. The latter is already close to the expected topology changing
transition to rotating caged black holes. Interestingly, close to the maximal radius Rmax
the deformation of the horizon due to rotation is significant, whereas close to Ruyin the
3-horizon appears to be almost spherical.

The deformation of the horizon due to rotation is demonstrated in more detail in
figure 5, where circumferences of the deformed 3-sphere of the horizon are exhibited. Here
le,max denotes the equatorial maximum circumference, and le min the equatorial minimum
circumference, both referring to the circumferences in the two equivalent planes of rotation,
while [, max denotes the polar maximum circumference, and I, min the polar minimum
circumference, representing circumferences for fixed azimuthal angles. In the static case,
the respective equatorial and polar circumferences agree, and the minimum circumference
represents the circumference of the waist of the NUBS.

Using the scaled energy-mass M, and the scaled angular momentum Jg, eq. (B.2§),
we exhibit in figure 5 these polar and equatorial circumferences versus the scaled angular
momentum ratio J; /ZWS3 2 We note, that for rotating uniform black strings, this ratio is
bounded, Js/M, 33 /2 < 1, with extremal rotating uniform solutions saturating the bound.

For reference, the figure exhibits the polar and equatorial circumferences of the branch
of marginally stable MP uniform black strings. This uniform branch ranges from the static
marginally stable black string to the extremal rotating marginally stable black string. The
static marginally stable string, with all circumferences equal, has temperature parameter
dy = 0. Along this rotating UBS branch, with equal maximal and minimal circumferences,
the temperature parameter dg and the deformation of the horizon 3-sphere due to rotation
both increase monotonically, while the temperature itself decreases monotonically, reaching

zero in the extremal case.

4.2.2 A critical temperature

The rotating nonuniform black strings branch off from the marginally stable uniform black
strings. These branches are obtained, by fixing a value of the temperature parameter dg
and thus fixing the temperature, and then decreasing the horizon angular velocity Qg from
the respective rotating UBS value. Depending on the value of the fixed chosen temperature
parameter dg, the corresponding rotating NUBS branches exhibit distinct features. When
do < df, the rotating NUBS branch extends back to a static NUBS solution with a finite
waist, and thus finite minimal circumferences I, min and le min. The size of the waist of the
static NUBS solution decreases with increasing dy. At the critical value dj, the respective
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Figure 4: The spatial embedding of the horizon of D = 6 rotating black string solutions is shown
for a sequence of solutions with fixed temperature parameter dy = 0.6 and varying horizon angular
velocity Qp: Qp = 0.34908 (upper row), Qp = 0.25 (second row), Qg = 0.212 (third row) and
Qp = 0.202 (lower row), A specifies the increasing nonuniformity of the solutions. Left column:
side view, right column: view in z direction. (ro = 1, L = L* = 4.9516.)

branch of rotating NUBS is expected to extend precisely back to a static solution with zero
size waist, i.e., to the solution at the topology changing transition, where the branch of
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Figure 5: The maximum and minimum polar circumferences Iy max and Iy min of the deformed
horizon 3-sphere, and the respective equatorial circumferences le max and le min are shown versus

the scaled angular momentum ratio J;/M. 3 /2 for branches of rotating NUBS with fixed values of
the temperature parameter dy ranging from 0.1 to 0.7. The circumferences of the deformed horizon
3-sphere are also shown for marginally stable MP UBS (denoted GL).

static NUBS merges with the branch of static caged black holes. This critical value of the
temperature parameter d; is in the interval 0.30 < dp < 0.33, and corresponds to a critical
value of the temperature 7% where 0.72 < Ty /Ty < 0.74 (with Tj the temperature of the
UBS). This may be compared with our previous results for static black strings [{]. Extrac-
tion of the critical temperature T from those static black string calculations, suggests the
bounds 0.72 < Ty /Ty < 0.76 for the critical temperature T, (when trying to account for
numerical inaccuracy in the critical region).?

Beyond the critical value dfj, the branches of rotating NUBS no longer reach static
NUBS. Instead they are expected to extend to a corresponding rotating solution with zero
size waist, and thus to lead towards a topology changing transition, associated with the
merging of a branch of rotating NUBS and a branch of rotating caged black holes. Indeed,
when dy > djj, the waist of the NUBS solutions monotonically decreases in size, the minimal
circumferences approaching zero. Thus we see here first evidence, that a topology changing
transition arises also for rotating branches of solutions. We note, that the deformation of
the horizon 3-sphere due to rotation is considerable at maximum size, while the waist of
the rotating NUBS becomes increasingly spherical.

In figure 6 we exhibit the nonuniformity parameter A versus the scaled angular mo-
mentum ratio JS/M;?’/2 for the same set of rotating NUBS. The branches begin at the
rotating marginally stable UBS with A = 0. When dy < djj, the rotating NUBS branches
extend back to static NUBS solutions with finite nonuniformity and thus finite waist. When
dp > djj, on the other hand, the nonuniformity parameter X increases apparently without
bound, approaching the topology changing transition for A — oco.

The branch of rotating marginally stable UBS is bounded by the static and by the
extremal rotating solution. It would be interesting to obtain the corresponding domain of

3Such an identification of T, assumes a monotonic dependence of the temperature of the static uniform
strings on the nonuniformity parameter A, since otherwise bifurcations might be present and complicate
this scenario.
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Figure 6: The nonuniformity parameter A and the scaled horizon angular velocity Qpr/Qp qr are
shown versus the scaled angular momentum ratio Js/M, 3 /2 for branches of rotating NUBS with

fixed values of the temperature parameter dy ranging from 0.1 to 0.7. (g, g1 denotes the angular
velocity of the marginally stable MP UBS.)

existence of rotating NUBS. The construction of extremal rotating NUBSs (if they exist),
however, currently represents an unsolved numerical challenge.

Figure 6 also exhibits the scaled horizon angular velocity Qy/Qpy cr, for this set of
rotating NUBS versus the scaled angular momentum ratio Jg/M. ;9’ / % Here Q u,c1, denotes
the horizon angular velocity of the marginally stable rotating UBS (with the same temper-
ature parameter dy). Starting from rotating marginally stable UBS with Qg /Qpg a1, = 1,
the branches end at static NUBS with Qy = J = 0, when dp < d;. When dy > djj, in
contrast, the branches of rotating NUBS appear to approach limiting solutions with finite
horizon angular velocity 2z and finite angular momentum J, associated with a topology
changing transition.

4.2.3 Global charges
The scaled mass M/M; i, and the scaled entropy Ss/Sscr, (where S = S;Ap_3L/4)

are exhibited in figure 7 versus the scaled angular momentum ratio Js/M. ;?' /2 for the same
set of solutions. Both My/Mj g1, and Ss/Ss g1, increase monotonically along the branches
of solutions with fixed temperature. As noted above, when Ty > T, the branches of
rotating NUBS end at static NUBS, whereas, when Ty < T, they appear to approach
rotating limiting solutions with finite values of the angular momentum J, associated with
a topology changing transition between branches of rotating solutions. We conclude from
the figure, that the scaled mass M, /M g1, of the limiting solutions increases with increasing
Js /Mg’ / 2, while their scaled entropy Ss/Ss a1, appears to be almost constant.

We exhibit the relative tension n of this set of rotating NUBS in figure 8, together
with the relative tension of the uniform black strings, ngy, = 1/3. Starting from rotat-
ing marginally stable UBS, the relative tension n decreases monotonically for branches
of rotating NUBS with large values of the temperature. As the critical temperature T
is approached, and beyond the critical temperature, the tension n no longer decreases
monotonically, but instead reaches a minimum and then increases again. Thus we observe
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Figure 7: Same as figure 6 for the scaled mass M;/M; q1, and the scaled entropy Ss/Ss.cL. (Ms.GL
and Ss qr denote the respective quantities of the marginally stable MP UBS.)
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Figure 8: Same as figure 6 for the relative tension n.

the backbending phenomenon for the relative tension n, encountered previously for static
NUBS [f], also for rotating nonuniform black strings. For the static NUBS we obtained
for the relative tension n the critical value n, ~ 0.2. Consistency requires, that this value
agrees within error bounds with the critical value obtained here for the branch of rotating
NUBS at the critical temperature T,. The figure indicates, that this requirement may hold.

Restricting to a canonical ensemble, the numerical analysis indicates that the qualita-
tive thermodynamical features of the uniform MP branch are also shared by rotating NUBS
solutions. For small values of J, the entropy is a decreasing function of 7', i.e. Cj 1 < 0.
However, the configurations near extremality are thermally stable in a canonical ensemble.
Also, although further work is necessary in this case, we expect all nonuniform solutions

to be thermodynamically unstable in a grand canonical ensemble.

4.2.4 The ergoregion

Like rotating black holes, rotating black strings possess an ergoregion. While the ergo-
surface of rotating uniform black strings is uniform like the horizon, the ergosurface of
nonuniform black strings reflects the nonuniformity of the horizon. In figure 9 we exhibit
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Figure 9: The spatial embedding of the ergosurface. of D = 6 rotating black string solutions is
shown for a sequence of solutions with fixed temperature parameter dy = 0.6 and varying horizon
angular velocity Qp: Qp = 0.34908 (upper row), Qg = 0.25 (second row), Qg = 0.212 (third row)
and Qp = 0.202 (lower row), A specifies the increasing nonuniformity of the solutions. Left column:
side view, right column: view in z direction. (ro = 1, L = L* = 4.9516.)

the spatial embedding of the ergosurface into 3-dimensional space for those rotating NUBS,
whose spatial embedding of the horizon was shown in figure 4.
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As in figure 4, the symmetry directions are suppressed here. The proper circumference
of the ergosurface is plotted against the proper arclength along the compact direction.
Denoting 7.(z), z the coordinates of the ergosurface at fixed 1, @2, 0, t, we define the

° ps dr.\?
o :/ eB(re(z),z) 1+ (_e) dz.
0 dz

The solutions shown have fixed temperature with temperature parameter dy = 0.6,

arclength as

decreasing horizon angular velocity 2z, and increasing nonuniformity of the horizon. The
first solution corresponds to the marginally stable rotating uniform black string, with an
ergosurface uniform w.r.t. the compact coordinate, but rotational deformation. When the
horizon angular velocity is lowered, the nonuniformity of the ergosurface increases, along
with the increase of the nonuniformity of the horizon.

In figure 10 we exhibit the ergosurface in terms of the coordinates rergo = 7 and
¢, in which the horizon is located at ¥ = 0. We show rotating NUBS solutions on three
branches with fixed temperature, corresponding to the values of the temperature parameter
dop = 0.3, 0.33 and 0.6. Thus the first two sets represent solutions just above and just
below the critical temperature Ty. All sets start with the corresponding rotating UBS and
thus a uniform ergosurface. As the horizon angular velocity Qg decreases from Qp a1,
nonuniformity of the ergosurface develops.

For dy = 0.3, where Ty > T, the rotating NUBS branch extends back to a static NUBS
solution, where the ergoregion disappears. The strong shrinkage of the ergoregion close to
this point is clearly seen in the figure for the NUBS solution with horizon angular velocity
Qp = 0.005. For dy = 0.33, the temperature is just below the critical value, Ty < T, and
the rotating NUBS branch is expected to extend to a corresponding rotating solution with
zero size waist, and thus signify a topology changing transition between rotating solutions.
This is reflected in the figure by the presence of a finite ergoregion of the solution with
Qi = 0.068, close to the transition point. Also for dy = 0.6, the ergoregion remains finite,
as the topology changing transition is approached. We note, that the size of the ergoregion
of the limiting solution appears to increase with decreasing temperature.

5. Rotating NUBS in heterotic string theory

In order to obtain rotating electrically charged black strings, we employ a solution gener-
ating technique, by performing symmetry transformations on the neutral solution. Within
toroidally compactified heterotic string, an approach to obtain the charged solutions from
the neutral one was presented in ref. [f]]]. This method was used to obtain, e.g., general
rotating electrically charged solutions in four dimensions [[f1], higher-dimensional general
electrically charged static solutions [Z], and rotating black hole solutions with one rota-
tional parameter in D dimensions [iJ]. General D—dimensional charged rotating black
holes with [(D — 1)/2] distinct angular momenta were constructed in [4].

The massless fields in heterotic string theory compactified on a (10 — D)-dimensional
torus consist of the string metric G,,,, the anti-symmetric tensor field B, (36 —2D) U(1)
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Figure 10: The ergosurface of rotating NUBS is shown for three sets of solutions with fixed
temperature, corresponding to the values of the temperature parameter, dy = 0.3, 0.33 and 0.6, and
decreasing horizon angular velocity 2, starting from the value Q2 g1, of the respective marginally
stable MP UBS.

gauge fields Ag) (1 <j<36—2D), the scalar dilaton field ®, and a (36 —2D) x (36 — 2D)
matrix valued scalar field M satisfying,

MIMT =L, MT =M. (5.1)

Here L is a (36 — 2D) x (36 — 2D) symmetric matrix with (26 — D) eigenvalues —1 and
(10 — D) eigenvalues +1. Following [i], iJ we shall take L to be

[ e : (5.2)
Lo-p

where I,, denotes an n x n identity matrix. The action describing the effective field theory
of these massless bosonic fields is given by [[(]

S = / APy "det Ge® | R + GH 9,80, + éGWTr(aHMLaVML)

1 ! / / ! ! - k‘
GG G Hy Hosy — G G F) (LML) F), | | (5.3)
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where

F) = 0,49 — 9,AQ) (5.4)
Hyp = 0,By, + 2Aff)ijF,§l;) + cyclic permutations of u, v, p, (5.5)

and Rg denotes the scalar curvature associated with the metric G,. The canonical Ein-
stein metric g, is
Guw = € 772G, (5.6)

One can add a general charge to any stationary vacuum solution by applying the
solution generating transformations (O(26 — D, 1)/0(26 — D)) x (O(10—D,1)/O(10— D)).
This generates a nontrivial ®, B, and M, as well as A,f .

Here we are mainly interested in the case D = 6, i.e., heterotic string theory compact-
ified on a four-dimensional torus. Since the generation procedure is identical to the one
given in ref. [[]] we shall not give the details, but only present the final results.

Starting with an arbitrary time independent solution g, of the vacuum field equation
in D = 6 (with ds? = guvdxtdz”), the expression for the metric of a charged configuration
expressed in the canonical Einstein frame is

. 1 cosh o + cosh 3)?
ds? = AYV4(ds? + — ( o (g1 tdp1 + Gppedip2)? (5.7)
it 4A
cosh a + cosh 1—-A
+< A B_ 2> (9gprtdprdt + gpyedipadt) + (—A >9ttdt2> ;

where A is related to the dilaton,
1
e =A= 1 <gt2t(cosh a—cosh 3)?+2gy; (sinh? a+sinh? 3)+ (cosh a+cosh ﬁ)2> . (5.8)

The time components of the U(1) gauge fields are

, (i)
AEZ) = —4?/_?(1 + gtt) sinha(cosha + cosh 8 + g4 (cosh a — cosh ﬂ)), 1 <i <20,
pli=20)
= —m(l + gtt) sinhﬂ(cosha + cosh 3 — gy (cosh o — COShﬂ)), 21 < <24,

whereas the spatial components of the gauge fields are given by

. (@) 1
ASIZ :ZT‘;]ZZ sinh v <1 ! IAgtt) (cosh ar+cosh 3)(cosh a+cosh 4 gy (cosh a—cosh B))) ,

1<i<20,

(i—20) 1
zzﬁ sinh 3 (1 _{ jl_ztt)(cosh a~+cosh 3)(cosh a+cosh 53— gy (cosh a—cosh 6))) ,

21 < i < 24,

with k£ = 1,2. Here o and 3 are two boost angles, 7 is a 20-dimensional unit vector, and
P is a 4-dimensional unit vector. The nonvanishing components of the two-form field B,,,
are

1
By, = gw'“ (cosh a—cosh 3) <1— % ((sinh? a4-sinh? 3) gy + (cosh a + cosh 6)2)>. (5.9)
gt
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The result for the matrix-valued scalar M is

Py nn™ Py np”
Mol 5.10
7 <Pz pnT Py ppT 10
where
. h2 1 2 1
P = sinh”a (1 + gu) 1 — —(cosh o + cosh 3 + gy (cosh a — cosh 3))* |,
291 4A
2sinh asinh 3 (1
Py — sin aSII;AB (1+gu) (1 + cosh acosh 3+ gy (coshacoshf—1)), (5.11)
. h2 1 2 1
P, — sinh” 8 (1 + gu) 1 — —(cosh a + cosh 8 — gy (cosh a — cosh 3))? ).
291 4A

Both black hole and black string charged rotating solutions can be generated in this way.
The results in [[f]] are recovered for the case of a D = 6 Myers-Perry black hole solution
with only one nonzero angular momenta.

Charged rotating NUBS strings with two equal angular momenta are found by replac-
ing in (5.7)—(p-10) the seed metric ds? as given by ([2:3) with gy = e2“r?W? — 24(1 —
7“8/7“2), o1t = —e2Gr2W sin? 6, Gpot = —e2Gr21W cos? . Here we present only the line
element of the charged rotating UBS solution

ds* = A(r)i dr + d2* 4 r%(d6? + sin® 0dp? + cos® Ody3) (5.12)
1— QT_Az/I + 2a24M 1 2

T

Y

+A(r)” (ﬂ(ﬂ(A(r) - %(COSh o 4 cosh 3))(sin? Odyp; + cos? Bdps)?

— i—y) 2r

2aM 2M
—(cosh a + cosh 3) a2 (sin? Odgy dt + cos® Bdpadt) — <1 - —2> dt2> ,
T T
where
2M 2 5
Alr)y=1+ T—Q(coshacoshﬂ -1+ F(COSha — cosh §)°. (5.13)

The extremal limit is found by taking the boost parameters to infinity together with a
rescaling of M.

The asymptotic structure of a general charged solution is similar to that of the vacuum
seed configuration. The spacetime still approaches the M?® x S background as r — oo.
Also, one can see that the event horizon location of the charged solutions is unchanged.
The position of the ergosurface remains the same, all fields being well defined on that
hypersurface. One can also verify that no closed timelike curves are introduced in the line
element (B.7) by the generation procedure.

The relevant properties of a charged solution can be derived from the corresponding
vacuum seed configuration. The mass-energy E and the string tension 7 of the charged
rotating solutions are

1 1 _
E = Z(l + 3cosh acosh B)E + 1(1 —coshacosh B)ToL, T =T. (5.14)
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The charged solution possesses also two equal angular momenta J; = Jo = J with

1
J = §(cosha + cosh 3)J. (5.15)

and has event horizon velocities Q; = Qy = Qp with

- 20y
Qg = . 5.16
H ™ Cosha + cosh 8 ( )
The electric charges defined as
QW) = L—A?’rhm / dz / dAsrP FP) (5.17)
have the following expression
E
QY —& (3——T> () sinh o cosh 3, 1 <4 <20, (5.18)
V2r
E
& (3— —T) (=20) ginh Beosha, 21 <i < 24.
V21
The new solutions have a nonzero magnetic moment,
p® = GG\/—Jn( )sinha, 1<i <20, (5.19)
L
= G6\/_Jp(z ) ginh B, 21<i<24.
Their dilaton charge is
Q Go ——’T( h hp—1) (5.20)
i=5-\7 cosh a cos . .

The relations between the Hawking temperature Ty and the entropy S of the charged
solutions and the corresponding quantities Ty and .S of the vacuum seed solution are

_ 2Ty 1
Ty = == h sh 3). 21
= cosha + cosh 8’ 5 2 S(cosha+ cosh ) (5:21)

One can see that the entropy increases with the increase of angular momentum. On the
other hand, the temperature decreases with the increase of the angular momenta. However,
the products of temperature and entropy, 775, and of horizon angular velocity and angular
momentum, (.J, are independent of the parameters a, 3.

As they should, all these properties reduce to those of the neutral solution upon sending
the boost parameters «, 3 to zero.

We conclude, that every vacuum solution is associated with a family of charged so-
lutions, which depends on 24 free parameters. In particular, the branch of non-uniform
solutions emerging from the uniform black string at the threshold unstable mode thus must
persist for strings with non-zero electric charge.
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6. Further remarks. Conclusions.

Considering rotating black strings in D dimensions, we have first addressed the GL insta-
bility of MP UBSs with equal magnitude angular momenta in even spacetime dimensions,
taking advantage of the enhanced symmetry of these configurations. Expanding around
the UBS and solving the eigenvalue problem numerically, our results indicate that the GL
instability persists for these solutions up to extremality for all even dimensions between
six and fourteen. This agrees with GM correlated stability conjecture [IJ], since these
black objects are also thermodynamically unstable in a grand canonical ensemble. It may
be interesting to note that the GM conjecture was also confirmed in [R(] for the case of
static, magnetically charged black strings, the Gregory-Laflamme mode vanishing at the
point where the UBS becomes thermodynamically stable (which in that case is away from
extremality).

While for static vacuum black strings study of the perturbative equations in second
order revealed the appearance of a critical dimension, above which the perturbative nonuni-
form black strings are less massive than the marginally stable uniform black string [[], the
analogous study in the presence of rotation has yet to be achieved.

In D = 6 we then constructed numerically rotating nonuniform black strings with
equal angular momenta. These emerge from the branch of marginally stable rotating MP
UBS solutions, which ranges from the static marginally stable black string to the extremal
rotating marginally stable black string. Along this UBS branch, the Hawking temperature
Ty decreases monotonically, reaching zero in the extremal limit. Fixing the value of the
temperature (or equivalently the temperature parameter) and decreasing the value of the
horizon angular velocity from the GL value, then yields a corresponding branch of rotating
nonuniform black strings.

Previously, in D = 6 dimensions, evidence was provided that the branch of static
nonuniform black strings and the branch of static caged black holes merge at a topology
changing transition [, the transition occurring at critical values of the temperature T},
the string tension n., etc. The results we have found for rotating NUBS indicate that at
T, the branches of rotating NUBS, each with fixed temperature, exhibit another critical
phenomenon.

In particular, the branches of rotating NUBS at fixed temperature Ty > T, end at
static NUBS solutions with finite nonuniformity and thus finite waist, where the nonunifor-
mity of these static solutions increases as Ty is decreasing towards T. In contrast, along
the branches of rotating NUBS at fixed temperature T < T the nonuniformity parameter
A increases apparently without bound, while at the same time the horizon angular velocity
and the angular momentum appear to approach finite values. Thus for Ty < T, we see
first evidence for a topology changing transition, where - in analogy with the static case -
branches of rotating nonuniform black strings and branches of rotating caged black holes
are expected to merge.

We conjecture that there exists a whole branch of rotating singular topology changing
solutions, labelled by their decreasing temperature, beginning with the static solution at
T,, and leading possibly up to an extremal rotating solution at Ty = 0. Obtaining the
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respective branches of rotating caged black holes represents a major numerical challenge.

In principle, there is yet another class of black objects which may play a role in this
picture. Apart from configurations with an S3 x S (black strings) and S* (black holes)
topology of the event horizon, the D = 6 KK theory possesses also vacuum uniform so-
lutions with an event horizon of topology S? x S' x S, corresponding to uplifted D = 5
black rings [[4, fi§]. Nonuniform solutions with an event horizon of topology S2 x St x S!,
approaching at infinity the M?® x S! background are also likely to exist. They may join the
MP NUBS branch at a topology changing transition. However, for the case discussed in
this paper with two equal magnitude angular momenta, we could not find any indication
of this scenario. This appears to be consistent with the recent results in [@], where the
general D = 5 black ring solution with two angular momenta was presented. An inspection
of this solution indicates that black rings with equal angular momenta must exhibit some
pathologies, which may explain our result.

We remark that, as in the static case [§], we observe the backbending phenomenon for
the relative tension n also for branches of rotating nonuniform black strings, below some
critical value of the temperature.

Our last concern was the construction of charged rotating NUBS in heterotic string
theory, by adding charge to the vacuum solutions by applying solution generating (O(26 —
D,1)/0(26 — D)) x (O(10— D, 1)/O(10— D)) transformations [l]]. The properties of these
new configurations can be derived from the corresponding vacuum solutions.

We expect that, similar to the static case [§], the solutions discussed in this paper may
be relevant for the thermal phase structure of non-gravitational theories, via gauge/gravity
duality.

The construction of the general rotating vacuum NUMBS with distinct angular mo-
menta seems to represent an exceedingly difficult task. However, the case of only one
nonvanishing angular momentum appears to be treatable. These solutions may be found
by using similar techniques to those employed in this work and are currently under study.

Although the static higher-dimensional black holes are stable [[i], their rotating coun-
terparts need not be, at least for large rotation. Recently, the existence of an effective
Kerr bound for d > 4 rapidly rotating black holes with one nonzero angular momentum
was conjectured by Emparan and Myers [BJ]. They showed that the geometry of the event
horizon of such rapidly rotating black objects in six or higher dimensions behaves like a
black membrane. Therefore the black hole becomes unstable. This instability should per-
sist for the corresponding rotating UBS solutions, and is not associated with the extra
dimensions.

Rotating black objects extending in extra dimensions may also exhibit other insta-
bilities. Cardoso and Lemos [[[]] uncovered a new universal instability for rotating black
branes and strings, which holds for any massless field perturbation. The main point of their
argument is that transverse dimensions in a black string geometry act as an effective mass
for the fields, which simulates a mirror enclosing a rotating black hole, thereby creating
a black hole bomb. For further work on the instabilities of rotating black objects, see for

example [E§-FQ].
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